Business Statistics MGMT 7
The Paul Merage School of Business
University of California, Irvine

Course Information:

Title: Business Statistics
Course number: MGMT 7 - Online
Quarter: Summer 2013
Course page:

Instructor:
Name: Mohammad Oskoorouchi
Office: SB 330
E-mail: moskooro@uci.edu
Office Hours: TBA

TA:
Name: TBD
Office:
E-mail:
Office Hours:

Textbook:
PKG 1269206494 Business Statistics Package Summer 13 UCI

Course description and objectives:
In order to stand out in today's competitive job market, new business school graduates need to bring to an organization special skills and abilities that give them the potential to hit the ground running and contribute immediately. One area where a student can have an immediate competitive advantage over both new graduates and existing employees is in the application of statistical analysis skills to business problems. Our intent in this course is to build your statistical background and to give you the statistical skills necessary to meet the needs of business and the real-world decision-making problems. In this course, we discuss real-world applications as a motivation for learning business statistics. We will focus on decision-making and business applications and provide you with an understanding of the role of business statistics in decision-making.
To enhance the students' appreciation for business statistics, we emphasize computer-based analysis, rather than manual computation. To this end, Microsoft Excel is used extensively throughout the course.

Learning Outcomes:
Following this course, students should be able to
• Construct and interpret graphical representations of data
• Compute and interpret numerical representations of data
• Apply the common rules of probability and to identify the types of processes that are presented by discrete probability distributions
• Discuss the important properties of the normal probability distribution and calculate probabilities using the normal distribution table and be able to apply the normal distribution in appropriate business situations
• Implement the Central Limit Theorem
• Construct and interpret a confidence interval estimate for a single population mean using both the standard normal and \(t \) distribution
• Determine the required sample size for estimating a single population mean
• Formulate null and alternative hypotheses for applications involving a single population mean
• Calculate and interpret the simple correlation between two variables
• Implement single and multiple regression models
• Recognize some potential problems if regression analysis is used incorrectly

Evaluation:
Your course grade will be based on quizzes, homework assignments, and exams.

Quizzes: (30%)

Homework Assignments: (30%)

Final Exam: (40%)

Quizzes: Students will take 10 online quizzes throughout the semester. You are given two chances for each quiz, and your higher score will be recorded. The quizzes are randomly generated from a large pool of questions. Each quiz has 30 points and consists of 10 true/false questions (10 points) and 10 multiple-choice questions (20 points).

Homework assignments: There will be 10 homework assignments that are designed to help you learn the mechanics of the methods discussed in videos and to give you an opportunity to apply these concepts in a straightforward manner. In addition to their value as learning exercises, doing a careful and thorough job on the homework assignments is the best preparation for the quizzes and exams.

Final Exams: The final exam is cumulative and consists of 40 multiple-choice questions.

Academic Honesty Statement: Students will be expected to adhere to standards of academic honesty and integrity, as outlined in the Student Academic Honesty Policy. All written work and oral presentation assignments must be original work. All ideas/material that are borrowed from other sources must have appropriate references to the original sources. Any quoted material should give credit to the source and be punctuated with quotation marks.

NOTE: It is the student’s responsibility to understand and follow the University Policies as stated in the catalog.

Tentative Course Schedule:

<table>
<thead>
<tr>
<th>Date</th>
<th>Topics</th>
<th>Office hours, deadlines, dues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Range</td>
<td>Chapter Title</td>
<td>OH Times</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>June 27-30</td>
<td>Chapter 2: Graphs, Charts, and Tables - Describing Your Data</td>
<td>OH: F 10-11 am, Sa 2-3 pm</td>
</tr>
<tr>
<td>July 4-7</td>
<td>Chapters 4&5: Discrete Probability Distributions</td>
<td>OH: F 10-11 am, Sa 2-3 pm</td>
</tr>
<tr>
<td>July 8-11</td>
<td>Chapter 6: Continuous Probability Distributions</td>
<td>OH: M 2-3 pm, Wed 10-11 am</td>
</tr>
<tr>
<td>July 11-14</td>
<td>Chapter 7: Introduction to Sampling Distributions</td>
<td>OH: F 10-11 am, Sa 2-3 pm</td>
</tr>
<tr>
<td>July 18-21</td>
<td>Chapter 9: Introduction to Hypothesis Testing</td>
<td>OH: F 10-11 am, Sa 2-3 pm</td>
</tr>
<tr>
<td>July 25-28</td>
<td>Chapter 15: Multiple Regression Analysis</td>
<td>OH: F 10-11 am, Sa 2-3 pm</td>
</tr>
<tr>
<td>August 1</td>
<td>Final Exam</td>
<td></td>
</tr>
</tbody>
</table>